
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 135 

JULY 1976, PAGES 433-468 
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by the Capacitance Matrix Method 
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Abstract. In recent years the usefulness of fast Laplace solvers has been extended 

to problems on arbitrary regions in the plane by the development of capacitance 

matrix methods. The solution of the Dirichlet and Neumann problems for Helm- 

holtz's equation is considered. It is shown, that by an appropriate choice of the 

fast solver, the capacitance matrix can be generated quite inexpensively. An anal- 

ogy between capacitance matrix methods and classical potential theory for the solu- 

tion of Laplace's equation is explored. This analogy suggests a modification of the 

method in the Dirichlet case. This new formulation leads to well-conditioned 

capacitance matrix equations which can be solved quite efficiently by the conjugate 

gradient method. A highly accurate solution can, therefore, be obtained at an 

expense which grows no faster than that for a fast Laplace solver on a rectangle 

when the mesh size is decreased. 

1. Introduction. In the last decade several very fast methods have been devel- 
oped for the direct solution of the quite special systems of linear algebraic equations 
which arise when Laplace's or Helmholtz's equation, 

-Au + cu = f, c = constant, 

is solved by standard finite-difference methods on certain simple regions in the plane. 
The best known of these methods are due to Hockney [23], [25] and Buneman [5]; 
see also Fischer, Golub, Hald, Leiva and Widlund [15] and Section 6 of this paper, in 

which a so-called Fourier-Toeplitz method is developed. For further studies of such 
methods see Dorr [14] and Buzbee, Golub and Nielson [8]. 

All these methods can be regarded as efficient computer implementations of the 

separation of variables method. That technique can only be used for regions which, 
after a possible change of independent variables, are rectangular and for differential 
operators of a special form. Typical examples are Laplace's and Helmholtz's equations 
in Cartesian coordinates on rectangular regions equipped with boundary conditions 
which do not change type along any of the sides of the rectangle. Another example is 

provided by the same equations on circular regions for which the use of polar coordi- 
nates is appropriate. Similar restrictions are imposed on the corresponding discrete 
problems. For a discussion of the special structure which is needed to allow for the 
use of these methods, see Widlund [46]. We note that for a linear system of equations 
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with n2 unknowns arising from Laplace's equation on a square region using n uniformly 

distributed mesh points in each direction, only n2(1 + O(1/n)) storage locations are 

needed, while the operation count is Cn2log2n(1 + o(l)). Here C is a constant less 
than ten. 

These fast methods can also be used for elliptic problems on regions, or with 
boundary conditions, which do not allow for separation of variables, provided that the 
differential operator allows for separation of variables on a different region or with dif- 
ferent boundary conditions, see Buzbee, Dorr, George and Golub [7], Buzbee and Dorr 
[6] and Hockney [26]. This last condition amounts to a requirement that the differ- 

ential operator can be split into the sum of commuting operators, each of which con. 
tains derivatives with respect to only one variable. 

We now briefly describe how a problem can be treated on a bounded region Q2 
which does not allow for separation of variables. We will limit our discussion through- 
out to two independent variables. The region 2 is imbedded in either a rectangle, an 

infinite parallel strip or the whole plane. A uniform mesh is imposed on the enlarged 
region. An expanded linear system of algebraic equations is derived which has a reduc- 

ible matrix; see Section 3. This new matrix contains the matrix of our original prob- 
lem as an irreducible component. The resulting matrix is a rank p modification of a 
problem which allows for the use of a fast solver. Here p denotes the number of 

boundary mesh points of the original finite-difference equation. For two-dimensional 
problems we thus have a value of p of the order n. The problem can be solved with 
the aid of the Woodbury formula or one of its variants, see Buzbee, Dorr, George and 

Golub [7]. Similar ideas are also discussed in George [18], Hockney [26] and Martin 

[35]. It is interesting to note that Hockney and Martin present their algorithms in 
terms of capacitance matrices, an idea borrowed from potential theory, rather than in 

terms of the Woodbury formula, which can be regarded merely as an algebraic identity. 
We note that Biuckner (see Todd [45]), has pointed out a relation between potential 
theory and the method of tearing which is closely related to the Woodbury formula. 
For a further discussion of previous work see Section 8. 

The work reported in this paper on the solution of the interior Dirichlet and 
Neumann problems grew out of an observation of a formal analogy between the Wood- 

bury formula and a classical solution formula for the Neumann problem for Laplace's 
equation as presented in Courant-Hilbert [12], Garabedian [17] and Petrowsky [41]. 
In this potential theoretical approach, which goes back to Neumann and Fredholm, an 
Ansatz is made in terms of a single layer potential. The charge density is then found 

by solving a Fredholm integral equation of the second kind. This operator has a simple 
zero eigenvalue, but it is bounded and has a bounded inverse on a subspace of codimen- 
sion one. The close analogy between the integral operator and the capacitance matrix 

which appears in the Woodbury formula suggests that the family of these matrices 

might be uniformly bounded and have uniformly bounded inverses on subspaces of 

codimension one. For such uniformly well-conditioned problems, iterative methods 

might compete successfully with Gaussian elimination. This conjecture has been borne 

out in practice. We have, therefore, chosen to solve the p x p linear system of equations 
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by the conjugate gradient method. The motivation for the choice of this method in 

this context is detailed in Section 7. The use of this method results in considerable 
savings compared to previous implementations of the capacitance matrix method in 

cases where the number of variables is large and only one or a few problems are solved 
for a given region Q2. Our interest in the conjugate gradient method began when we 

searched for an explanation for the rapid convergence reported by George [18] with 

his so-called iterative imbedding algorithms; see further Section 8. 

When we turn to the Dirichlet problem, we find that the use of the Woodbury 

formula corresponds to the attempt to solve the original differential equation in terms 

of a single-layer potential. That approach is known to give rise to a Fredholm integral 

equation of the first kind and thus an ill-posed problem. While it is possible to prove 

that the resulting capacitance matrix is nonsingular for any finite value of p, the ill- 

posedness of the continuous problem is reflected in a growth of the condition number 

of the capacitance matrices when p increases. In our experiments, as reported in Sec- 

tion 9, we found that the condition numbers can become large and, also, that they 

vary rather erratically from case to case. This might lead to a loss of accuracy of the 

algorithm as previously implemented. The conjugate gradient method also becomes 
quite uneconomical in this context. 

But for the continuous Dirichlet problem, it is known that the proper Ansatz is a 

layer of dipoles. Changing our Ansatz to a finite-difference analog of a dipole layer, 

the capacitance matrices, in our experience, are again quite well-conditioned and the 

conjugate gradient method performs very satisfactorily. We note that this successful 
Ansatz falls outside the algebraic framework of Buzbee, Dorr, George and Golub [7]. 
Our treatment also differs from theirs in the Neumann case for Laplace's equation in 

that we allow the capacitance matrix to become singular. 
A potential theory for discrete Poisson problems is developed in Sections 3-5. 

While our theory is mostly formal it has served very well as a guide in choosing a 

proper Ansatz for the Dirichlet problem and certain scale factors. A rigorous mathe- 

matical analysis of our method is given in certain cases in the thesis of Shieh [42]. 
Another problem in the use of the method as previously developed is the con- 

siderable effort expended in generating the capacitance matrix. A solution has been 

outlined briefly in Widlund [46]. Taken together these improvements result in an 

operation count of Cn2 log2n(1 + o(l)) compared to Cpn2 log2n(1 + o(l)) for the 

algorithm of Buzbee, Dorr, George and Golub [7]. The basic idea involved in the fast 

generation of the capacitance matrix is the use of translation invariance which can be 

achieved by imposing a periodicity condition as a boundary condition for the problem 
for which the fast Poisson solver is applied. The absence of a boundary in such cases 

makes the discrete fundamental solution very simple. The matrix representing it is a 

circulant; and therefore, by knowing one of its columns, we know the entire matrix. 
We note that the same observation was made independently by Peskin [40] and used 

in his calculations of the blood flow in the heart. 
In our numerical experiments, reported in Section 9, we have used the Fourier- 

Toeplitz method for the separable problems. Other fast Laplace or Helmholtz solvers 
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could also have been chosen. While the experiments reported in this paper have been 
carried out using the five-point formula and the well-known Shortley-Weller approxima- 
tion to the boundary conditions, we believe that our version of the capacitance matrix 
method should work equally well for other difference schemes. A series of experiments 
with a high order method suggested by Heinz-Otto Kreiss has been carried out. The 

number of conjugate gradient iterations and the over all performance of the algorithm 
is virtually unchanged. Results from these experiments and a description of the method 
will be given in Pereyra, Proskurowski and Widlund [39]. It should also be noted that 

a fast Helmholtz solver can be used to a great advantage in the iterative solution of 

more general elliptic problems; see Concus and Golub [10] and Bartels and Daniel [2]. 
Similarly, the use of fast Helmholtz solvers for transonic flow calculations has been 
advocated by Jameson [29] and Martin [36], [37]. The first author has carried out 
preliminary work to modify our method to handle eigenvalue problems. Dianne P. 

O'Leary and the second author are exploring the extension of a variant of our method 

in three dimensions. 
This paper has previously appeared as an ERDA-NYU report. That version in- 

cludes a FORTRAN program for nonnegative values of the constant c, a description of 

and a guide to the use of our program. 
Acknowledgements. The authors want to thank J. Cooley for providing us with 

a fine fast Fourier transform program and C. Paige and M. Saunders for an excellent 
conjugate gradient routine. The authors also want to thank P. Concus, G. Dahlquist, 
A. George, G. Golub, 0. Hald, H.-O. Kreiss, D. Martin, D. P. O'Leary, S. Osher, C. 

Peskin, V. Pereyra and A. Shieh for their interest and encouragement. 

2. Certain Results from Classical Potential Theory. We give only a brief review 
of a few results of potential theory. For a detailed exposition see the references given 
in the previous section. We begin by defining the potential V resulting from a charge 
distribution p on a boundary curve 3Q, 

V (x) = (1/IX) f0 ^p(t) log(1/r) ds(t). 

We will assume throughout that the boundary 32 is sufficiently smooth. Here x - 

(X1 , X2), t = (lI t2) and r2 = (x - t)2 + (x2 - t2)2. We note that (1/2iT) log(l/r) 
is a fundamental solution of Poisson's equation, i.e. 

-A(1/2iT) log(l/r) = 6(r), 

where 6(r) is the delta function. Similarly, the potential W of a dipole density P on an 

is defined by 

W(x) = (1/I) p(t) [(I3lan) log(l/r)] ds(t). 

We adopt the convention that the normal direction of aQ is towards the interior of the 

region Q in which we want to solve our problem. We note that the normal derivative 

in the formula for W is taken with respect to the Greek variables. Denote by V - the 
limit of V when x approaches aQ from the interior and by V + the corresponding 
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exterior limit, etc. By using a Green's identity, one can show that V and 3W/1n are 
continuous across the boundary M2, while a V 1/n and W satisfy jump conditions. Thus, 

(y+ = V-, 

aC+V aI = (+)p + (lI/I)f p [(QlUn,) log(l/r)] ds, 

W = (+)p + (I/I)J p [(313nt) log(l/r)] ds, 
and 

3W+13n = at-/an. 

The Neumann and Dirichlet problems can be reduced to Fredholm integral equa- 
tions. For the interior Neumann problem, we make the Ansatz 

u(x) = (1/2r)fftf(t) log(l/r) dt + (lI/i)f f p(t) log(1/r) ds(t) 

= U (X) + v(x) 

for the solution of 

-Au=f, xE2, 

Iu/a = g, x E a. 

The first term, us, is called a space potential term. The boundary condition is satisfied 
by choosing p such that 

(2.avln = -p + (I /)IT p [(3I3nx) log(l/r)] ds 

= g - (Ta/Qn)us I a . 

This equation can be written as (I - K)p = g, where K is a compact operator defined 
by the integral above. The equation is a Fredholm integral equation of the second 
kind and thus a well-posed problem. It has a zero eigenvalue and is solvable if g has 
a zero mean value. This condition follows from the standard Fredholm theory. It can 
also be understood as the condition that in steady state heat flow, the energy liberated 
by heat sources in Q must be balanced by the heat flow across the boundary. 

If we now attempt to use the same single layer Ansatz for the Dirichlet problem, 
we obtain a Fredholm integral equation of the first kind. It has the form 

(1/7) fa sp log(l/r) ds = g - us a s 

and is an ill-posed problem. The kernel is now symmetric, a fact which might initially 
appeal to a numerical analyst. 

The Ansatz 

u(x) = (I /2Tf{ f log(1/r) dt + (I/iT) p[(3/3n)log(l/r)] ds 

= uS(x) + W(x), 

provides a correct approach to the interior Dirichlet problem. If g now denotes the 
Dirichlet data, we obtain 
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(2.2) W= + (1/IT) f0u[(3/3nt)log(1 /r)] ds = g - US 9. 

This is a well-posed problem of the form (I + KT)1 = g, where KT is the adjoint of 

the compact operator K introduced above. 
We remark that the exterior Neumann and Dirichlet problems similarly give rise 

to the equations 
(I + K)p = g and (I - KT)p = g, 

respectively. This is important in developing the existence and uniqueness theory for 
the elliptic problems by using the Fredholm theory of compact operators. 

We conclude this section by remarking that the fundamental solution 
(1/2iT) log(l/r) can be replaced by any other fundamental solution of the Laplace oper- 
ator. In particular, we could have used the Green's function for a problem which is 
periodic in one or two directions. The periods must then be chosen such that the re- 
gion Q is a subset of the interior of a fundamental region of periodicity; i.e., we must 
use a wide enough infinite parallel strip or large enough rectangle. This observation is 
quite important when we implement our ideas computationally. This theory also gen- 
eralizes, in a straightforward way, to Helmholtz's equation with a constant c : 0. 

3. The hnbedding of Discrete Poisson Problems. In the next three sections we 
will develop a similar, formal potential theory for discrete Poisson problems. For the 
purpose of exposition only, we limit our discussion to a case with the same uniform 
mesh size in the two coordinate directions and to Laplace's equation, i.e. c = 0. The 
treatment of that case is actually more complicated than that of c > 0. Our method 
can also be used for negative values of c. The theoretical problems arising from the 
singularity of the operators for certain negative values of c are quite similar to those 
of the case under consideration. 

The Laplace operator is replaced by a finite-difference approximation such as the 
five-point formula. The fundamental solution (1/2Xr) log(l/r), used in Section 2, will 
then be replaced by the discrete Green's function for the surface of an infinite cylin- 
der, the surface of a torus or the whole plane. Very efficient and accurate Poisson and 
Helmholtz solvers exist for such problems; see Section 6. We will denote by B the 
matrix representing the discrete Laplacian -h2Ah, employing undivided differences, for 
the extended region and boundary conditions of our choice. 

We decompose the set of mesh points into three disjoint sets Qh, a2h and (CQ)h. 
The set Q2h is the set of interior mesh points; i.e., each of its members has all its rele- 
vant neighbors in the open set Q2. The remaining mesh points in Q2 constitute M2, 
the set of irregular mesh points, while the set (CQ)h contains all the remaining, the 
exterior, mesh points. We call the exterior and the interior points regular mesh points. 
Our numerical method produces values of a mesh function even for the points in (CQ)h. 
These values are largely arbitrary, a useless by-product from the fast Poisson solver. It 
is likewise necessary to provide some largely arbitrary extension of the data to the set 
(CQ?)h. We note that the formulas for the continuous problem, given in the previous 
section, can be interpreted as having resulted from the extension by zero of the right- 
hand side f. 
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For all regular mesh points, i.e. those in Qh U (CQ2)h, we use the basic discretiza- 
tion formula of the Laplace operator which we have already selected. That formula 
cannot be used for the irregular mesh points, i.e. those in M.; because we must intro- 
duce an approximation of the boundary conditions; and we must also assure that our 
solution on Qh U M. is independent of the extended values of the data and the solu- 

tion on (CQ2)h. This will be achieved by eliminating from the discrete Laplacian, cen- 
tered at an irregular mesh point, the values of the solution at its exterior neighbors. 
Thus, in the Dirichlet case, we will combine the discrete Laplacian with interpolation 
formulas which approximate the boundary condition, while in the Neumann case we 
will use difference approximations to the normal derivative for the same purpose. Ex- 
amples with full details will be given below. The resulting linear equations correspond- 
ing to the irregular mesh points should be multiplied by appropriate scale factors. Be- 
cause the choice of these factors is quite important for our theory and the performance 
of the conjugate gradient method, it will be discussed at some length below. 

We will denote by A the matrix corresponding to our difference equations on the 
entire mesh. The equations and unknowns are ordered in the same way as the regularly 
structured problem given by the matrix B. The following representations of the matrix 
A are direct consequences of the fact that the rows of A and B are the same for all 
regular mesh points. For the Neumann problem we write A = B - UVT, while we use 
the notation A = B + UZT for the Dirichlet case. The matrices U, V and Z have p 
columns, where p is the number of points in the set M&,. The matrix U represents an 
extension operator. It maps any mesh function defined only on M., into a function 
on all mesh points. It retains the values of the mesh function on M2h and makes the 
remaining values equal to zero. Its transpose, UT, is a trace operator; i.e., UT maps 
any mesh function defined for all mesh points into its restriction to M2 h. The rows 
of VT, and _ZT, are simply the difference between the corresponding rows of B and 
A. One can therefore regard VT and _ZT as compact representations of B - A from 
which the zero rows corresponding to the regular mesh points have been deleted. We 
note that VT and ZT depend on the scaling chosen for the irregular rows of A. 

In our construction of the matrix A the couplings to exterior mesh points were 
eliminated for the irregular rows. If we choose a suitable permutation matrix P we see 
that A is a reducible matrix 

pApT = f1 

\2 1 A22 

The submatrix A1 1 is the matrix for the linear system of equations which we set out 
to solve. It is easy to see from the structure of the matrix A that the solution on Qh 

U M2h is independent of the solution and data on (CM)h. The second diagonal block 
A22 can be interpreted as a finite-difference approximation to a Dirichlet problem on 
CM. It is therefore easy to verify that A22 is nonsingular if our basic difference approx- 
imation is of positive type. Similarly, any convergent difference approximation to the 
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interior Dirichlet problem will give rise to a nonsingular A1 1 and thus a nonsingular 
matrix A. For the Neumann case we assume that the row sums of A1 1, and hence of 
VT, vanish and that the matrix A1 1 has a simple zero eigenvalue. It is then easy to 
see that the matrix A also will have a simple zero eigenvalue. 

4. A Capacitance Matrix Method for the Dirichlet Case. We will now describe 
our method for dealing with the system of equations 

Au = (B + UZT)u = F. 

Let Au - F r define the residual vector r. We wish to find a vector u so that the 
components of r vanish for all points in Qh U aQh. The restriction of any such u to 

Uh u 
ah provides the solution of the original difference equations. Guided by the 

continuous analog,we try the Ansatz, 

u = GF + 2GVD,. 

The vector GF corresponds to the space potential part of the solution and satisfies 
BGF = F. The operator G thus plays the same role as the integral operator defined by 
the fundamental solution of the continuous problem. Any constant belongs to the 
nullspace of B and the choice of G is therefore not unique. Our particular choice of 
G corresponds closely to the standard choice for the continuous problem. We remark 
in particular that GF can be defined for all vectors F. For details see Section 6. 

The second term in our Ansatz is a discrete analog of the potential from a dipole 
density. The vector , has p components and is determined by solving a system of lin- 
ear equations which we will derive below. The square matrix D is diagonal and contains 
scale factors. The choice of D and the scaling of the irregular rows of A is directed 
towards making the discrete problem close to the potential theory of Section 2. The 
mesh function VD, should vanish for all x E Q2h. It is the sum of p mesh functions 
each representing a discrete dipole. The simplest construction of such discrete dipoles, 
which is the one we have used exclusively in our numerical experiments, is given in 
Figure 1. We have thus chosen to work with undivided differences. With the choice 
of weights as in our figure VTv is an approximation of an undivided normal difference 
of the form ha(av/an) + o(h). Here hoe = h/cos a and a is the angle between the 
normal through the irregular mesh point and the closest coordinate axis. 

We now use our Ansatz and compute the residual vector, 

(4.1) Au - F = (B + UZT)(GF + 2GVD,)-F= (2VD ? 2UZTGVD)g ? UZTGF. 

From the properties of U and V, it follows that the correct difference equations are 

satisfied for all x E Qh and any vector M. To derive a linear system of equations for 
the vector M we multiply Eq. (4.1) by the trace operator UT. It is easy to verify that 

UTU=IP and also, for our choice of V, that UTV = Ip. Here Ip is the p x p identity 
matrix. We thus obtain 

(4.2) (2D ? 2ZTGVD)g = -ZTGF. 
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FIGURE 1 

A discrete dipole with the scaling matrix D = I. We always assume that 
the boundary of the region and the mesh size is such that the two points 
with negative coefficients fall in the complement of QZ. The two exterior 
mesh points lie on opposite sides of the normal. One of these points is 
at a distance h and the other at a distance \/2h from the irregular mesh 
point. 

The solution ,u of Eq. (4.2) will make the components of the residual vector vanish for 
x E h I. The residual vector will in general not be equal to zero for all x E (C92)h. 
As we saw in Section 3, this is of no importance because the restriction of the vector 
u to Qh U a2h wiU stil provide a solution of the original problem. The matrix on 
the left-hand side of Eq. (4.2) is the capacitance matrix C. 

By analogy to the continuous case we expect the capacitance matrix C to be non- 
singular and in our numerical experiments we have consistently found C to be very 
well conditioned. When we attempt to prove that C is nonsingular we find that the 
existence of a nontrivial p-vector p such that Co = 0 implies that the restriction of 
AGVD q to Qh U Mh must vanish identically. Hence, since A1 1 is nonsingular, the 
mesh function GVD4 must be zero for all x E Uh u ah. Conversely, if there exists 
a nontrivial b such that GVDk is identically zero on Q2h u U h it follows from the 
block structure of PApT that Cq = UTAGVDO = 0. We have not been able to exclude 
the existence of such a vector p. In our opinion tools from mathematical analysis are 
required to resolve this problem completely. A proof that C is nonsingular when B 
and A are nonsingular, e.g. when c > 0, is given in Section 8. 

We would like to be able to interpret Eq. (4.2) as a discretization of the appro- 
priate Fredholm integral equation of the second kind. A simple discretization of such 
an equation would be based on a numerical quadrature rule of the form 

(4.3) ?p 2 E ((aIant)F)1iihi = gi 
i 

where P(x, t) is the fundamental solution of the continuous problem, hi is a local mesh 
length and the values of ui are approximate values of the dipole density Mi. In the case 
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of zero Dirichlet data g = -us. By comparing right-hand sides we see that it is natural 

to choose a scaling of the irregular rows of A such that the row sums of ZT equal one. 

Such a scaling is always possible for the Dirichlet case; see further the discussion at 

the end of this section. 
We next turn our attention to the left-hand sides of Eqs. (4.2) and (4.3). We 

must then determine the local mesh length hi. The distance between consecutive irreg- 

ular mesh points will of course vary in a highly irregular way and it therefore seems 

appropriate to use a value of hi which represents a local average. Let us consider a right 

triangle with a slightly curved hypotenuse constructed from a segment of the boundary 

of length VIh. The average distance between the boundary mesh points close to this 

segment is then h/cos a + o(h), where a E [0, r/4] is the smallest angle between the 

normal of MQ and a coordinate axis. We will adopt h/cos a as our choice of hi. 
Away from the diagonal the elements of 2ZTGV behave like 2hi(a3ant)P + o(h). 

This follows from our choice of hi, zT and V and the fact that divided differences of 

the discrete fundamental solution G converge to the corresponding derivatives of the 

continuous fundamental solution r(x, t) for x / t, see Thomee [44]. Therefore, we 

can simply adopt the choice D = Ip. The elements of the capacitance matrix C close 

to the diagonal present particular problems. While all off-diagonal elements of the ma- 

trix resulting from a numerical quadrature as in formula (4.3) are 0(h), this is not true 

in general for the elements of the capacitance matrix close to the diagonal. This is a 

consequence of the irregular positions of the points of 39h' Arthur Shieh [42] has 

therefore suggested that we should consider all elements of the capacitance matrix C 

corresponding to the influence between pairs of points within a distance of W as an 

entity. The resulting band matrix Eh should then ideally be a consistent approximation 

to the identity operator. 
We will not pursue this difficult subject further at this time. We refer to Shieh 

[421 for a detailed theoretical analysis. However, we would like to point out that while 

our description of the algorithms so far closely reflects our actual implementation of 

the method we see several alternatives. Thus the discrete dipole layer could be con- 

structed differently by allocating a fraction of the weights Ai to nearby discrete dipoles 

located entirely outside Qh U aE2h. This would change the leading term of the capaci- 

tance matrix while the elements far away from the diagonal would be virtually un- 

changed. Variations of the elements of D are also possible, while retaining a local aver- 

age of one, without spoiling our comparison between Eqs. (4.2) and (2.2). 
In our experiments we have always used the five-point formula for the regular 

mesh points and combined it with the well-known Shortley-Weller approximation for 

the irregular points, see Collatz [9, Chapter 5.11, or Forsythe-Wasow [16, Section 20.91. 
Thus, if x E M2h has its eastern and southern neighbors in (CE?)h, we obtain 

(4.4) -(2/(1 + 61))uW + (2/65 + 2/62 + ch2)uc - (2/(1 + 62))un 

= h2fc + (2/61(l + 51))Ue + (2/62(l + 62))us. 

The scheme is of positive type. The parameter 6, = h, /h where h, is the distance, 
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along a mesh line parallel with the xi -axis, of the mesh point x and the boundary MQ. 
Hence, 6 1 E (0, 11 . The Dirichlet data at this point on aQ is denoted by Ue. The 
values of 62 and uS are defined similarly. If only the southern neighbor of x belongs 
to (CS2)h, 61 is set equal to one and the ue-term is moved to the left-hand side of the 
equation. We note that we can derive this formula by using quadratic polynomial 
extrapolation to find auxiliary values of u at the exterior mesh points which are next 
neighbors of x. These values are then eliminated by using the five-point formula. We 
note that we can regard any other boundary approximation from the same point of 
view. The sum of the extrapolation coefficients must always be nonzero and we can 
therefore safely assume that we will be able to scale each irregular row of A, making 
each row sum equal to one. 

Now let c = 0. If we apply the recipe of scaling suggested above, we find that 
Eq. (4.4) should be multiplied by 

(2/61(l + 61) + 2/62(1 + ?2)) 

If only the southern neighbor is exterior, the scale factor is 62(1 + 62)/2. It can easily 
be shown that the diagonal elements of the resulting matrix A take values in the inter- 
val [1, 4]. In many of our experiments we have used a scaling which makes all the 
diagonal elements of A equal to 4. This choice is close to the recipe suggested by our 
formal theory, and it results in a performance which is often slightly better. The use 
of formula (4.4) in its unscaled form results in a much poorer performance; see further 
Section 9. 

5. A Capacitance Matrix Method for the Neumann Case. In the Neumann case 
our system of equations is written as 

Au = (B - UVT)u = F. 

It is solvable if and only if the right-hand side F is orthogonal to the left eigenvector of 
A which corresponds to the zero eigenvalue. By assumption this eigenvalue is simple. 
By using the reducible structure of A, described in Section 3, it is easy to see that the 
mesh function corresponding to this eigenvector must vanish for all x E (C&)h. The 
right-hand side F is therefore consistent regardless of its values on (C?)h if the data is 
already consistent on Q2h U Mh, 

Guided by the continuous analog, we try the Ansatz u = GF + 2GUDp. The p- 
vector p corresponds to the boundary charge distribution of the continuous case. The 
extension operator U was introduced in Section 3 while the diagonal matrix D contains 
certain scale factors. 

Computing the residual vector, we obtain 

(5.1) Au - F (B - UVT)(GF + 2GUDp) - F = (2UD - 2UVTGUD)p - UVTGF. 

Because of the factor U, the residuals are zero for all x E Qh U (CE2)h. The vector p 
is determined by requiring the residuals to vanish on 2h, We therefore multiply Eq. 
(5.1) by UT and obtain 
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(5.2) (2D - 2 VTGUD)p = VTGF. 

We note that our formula is virtually identical to the Woodbury formula; see House- 
holder [281. 

The matrix of Eq. (5.2) is the capacitance matrix C of the Neumann problem. It 
is singular because if it were not our procedure would provide a solution for any data. 
It is also easy to verify that the zero eigenvalue of C is simple. Let us assume that 0/ 
and 02 were two linearly independent eigenvectors of the capacitance matrix C corre- 
sponding to the zero eigenvalue. Then 

VT GUDOi = DOi, i = 1, 2, 

and GUDOb, i = 1, 2, must be nonzero vectors. These vectors are, by a similar argu- 
ment, linearly independent. A direct calculation shows that GUDOb, i = 1, 2, are eigen- 
vectors of A with a zero eigenvalue. We have thus arrived at a contradiction because, 
by assumption, the zero eigenvalue of A is simple. 

The right-hand side VTGF of Eq. (5.2) is consistent if F is consistent for the 
original problem Au = F. Let bT be the left eigenvector of C corresponding to the 
zero eigenvalue. It can readily be shown that 0 T = TVTG is the corresponding eigen- 
vector of A. But ~ TF = 0 implies 0 T(VTGF) = 0. 

We will show in Section 7 that the singularity of C will cause little difficulty when 
we solve for p by the conjugate gradient method. Any solution p of Eq. (5.2) will 
result in a zero residual for all mesh points and thus a solution of the original problem. 

We now attempt to choose the scaling of the irregular rows of A and the diagonal 
matrix D so that Eq. (5.2) appears, as closely as is possible, as a discretization of the 
integral equation 

(5.3) p - 2f[(aIan,)r]p ds =. 

Our arguments here are very similar to those in Section 4. The right-hand side g' is by 
Eq. (2.1) equal to the normal derivative of the space potential if the Neumann data is 

equal to zero. It follows from our discussion in Section 3 that the rows of VT are 
linear combinations of undivided difference approximations of the normal derivative 
and the undivided discrete Laplacian. The mesh function VTv is therefore essentially 
of the form ,Bh av/an + o(h) where the factor ,B(x) is nonzero. We therefore scale the 

irregular rows of A to make ,B = 1. This choice makes the right-hand side of (5.2) a 
consistent approximation to that of Eq. (5.3) except for an unimportant factor h. 

Adopting this choice of scaling of the rows of A we next examine the elements 
of the capacitance matrix which are far from the diagonal. They are seen to behave 
like 2h(a/anx)r + o(h) which suggests that an appropriate choice of the elements of 
the matrix D is 1/cos a. Here, a E [0, ir/4] is the angle between the normal direction 
and the closest coordinate axis. In our experiments we have simply used a scaling D = 

Ip. 

As in the Dirichlet case we could modify our Ansatz in an attempt to make our 
discrete model more flexible. We could thus spread certain fractions of the charges pi 
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to nearby exterior mesh points. This approach mainly affects the elements of the 

capacitance matrix which are on and close to the diagonal. We have not tried any such 
procedures numerically. An alternative Ansatz of this form will lead to diffilculties 
similar to those in the Dirichlet case. We have thus been unable to show that the 
right-hand side of the equation replacing (5.2) is consistent except in the version of 
the method which we have used consistently in our experiments. 

We will now describe the scheme which we used in our computations. Our point 
of departure is the scheme (4.4) for the Dirichlet problem. The values ue and uS must 
be eliminated by using some approximation to the normal derivative. Denote by 71 E 

[0, 1r/2) the angle between the normal direction at the eastern point and the xl -axis. 
We have used the formula 

(5.4) (1 - 1 tany1)u, + ?6 tany,un 
- Ue = (6lh/cosy1i)(3u/an)e. 

Similarly, denoting by y2 the angle between the x2-axis and the normal direction at the 

southern point, we obtain 

(5.5) (1 - 62 tan 'Y2)U, + 62 tan y2uw - Us = (62h/cos Y2)(3u/3n)s. 

By combining formulas (4.4), (5.4) and (5.5), we obtain 

-2(1/(1 + 6I) + tan 72/(1 + ?2))Uw 

+ (2(1 + tan yl)/(l + 51) + 2(1 + tan 72)/(1 + 62) + ch2)Uc 

- 2(1/(1 + 62) + tan 7 /(1 + ?1))Un 

= h2fc - (2h/((1 + 61)cos y1))(au/an)e 

-(2h/((1 + 62)cos'Y2))(auI3n)s. 

When we modify the formula in the obvious way for the case of only one, a southern, 
exterior neighbor, we obtain 

-(1 + 2 tan y2 /(1 + ?62))uw 

+ (2 + 2(1 + tany2)/(1 + 62) + ch2)u, - (2/(1 + 62))un - Ue 

= h2fc - 2h/(cosy2(l + ?2))(3ul3n)s 

We note that this scheme is of positive type. 
According to our recipe above, the scale factors for the irregular rows of A are 

d = (2/((1 + 61)cosy1) + 2/((1 + 62)cos72))- 

and 

d = cos Y2(1 + 62)/2, 

respectively. One can easily show that this results in diagonal elements which vary be- 

tween one and three. Here, just as in the Dirichlet case we have frequently used a scal- 

ing which makes the diagonal elements equal to four, in which case we are still quite 
close to the scaling suggested by our discussion above. 
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6. The Fourier-Toeplitz Method and the Fast Generation of the Capacitance Ma- 
trix. We will now describe the variant of the Fourier-Toeplitz method which we have 
used in our numerical experiments to solve the Helmholtz equation on the entire mesh. 
We will also show how the capacitance matrix is generated in our program at a modest 
expense. We have previously indicated that it is important to achieve translation invari- 
ance. We should therefore choose a region without a boundary. In the original paper 
on the Fourier-Toeplitz method (see Fischer, Golub, Hald, Leiva and Widlund [151), 
the Dirichlet and the doubly periodic problems on rectangles and the Dirichlet problem 
on an infinite parallel strip were discussed in detail. Of these, the doubly periodic case, 
which amounts to solving the problem on the surface of a torus, would have been an 
appropriate choice. However, we have instead chosen an infinite parallel strip with a 
periodicity condition, i.e. a problem on the surface of an infinite cylinder. This variant 
of the Fourier-Toeplitz method is somewhat faster than the doubly periodic case be- 
cause an intermediary step employing the Woodbury formula is eliminated. More im- 
portantly, our choice allows for a more satisfactory resolution of a special problem as- 
sociated with cases where the operator B is singular. A third alternative would be a 
method of Hockney's [25, p. 178], which allows for the calculation of the solution of 
Helmholtz's equation on the entire plane. However, that method requires four times 
as much storage and also more arithmetic operations and is not therefore appropriate 
in our present context. Hockney's idea could however prove quite useful should we 
attempt to compute the solution of exterior problems without a prior transformation 
of the region into a bounded set. 

The solution of the five-point discrete Helmholtz problem on an infmite strip 
parallel to the x1 -axis gives rise to a block-tridiagonal linear system of equations of 
infinite order, 

0 

at the mesh points on xl= jhz. We will always assume that the vectors f(J) vanish ex- 
cept for a finite number of indices. The matrix Ac is an n x n circulant, 

4 ch2 -1 0 0 -1 l 
-1 4?ch2 -1 0 0 

0 0 -1 4?ch2 -1 
-1 0 0 -1 4?ch2 
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For convenience, we assume that n is even. The matrix AC then has the normalized 
eigenvectors (1/n)l /2(1, 1, . . ., I)T and (1/n)1/2(1, -I, . . ., -1)T corresponding to 
the simple eigenvalues 2 + ch2 and 6 + ch2, respectively, and (n - 2)/2 double eigen- 
values 4 + ch2 - 2 cos(2irl/n), 1 = 1, 2, . . ., (n - 2)/2, with the eigenvectors 0(l) and 

0(l). These are given by 

()= (2/n)1/2 sin(kl2T/n), 

and k=O, 1,... ,n- 1, 1= 1,2,... ,(n-2)/2. 

(l)= (2/n)112 cos(kl2ir/n), 

A change of basis corresponding to the diagonalization of AC can be carried out 
inexpensively by using the Fast Fourier Transforms if n has many prime factors; see 
Cooley, Lewis and Welch [1 11 . 

This change of basis, cf. Fischer, Golub, Hald, Leiva and Widlund [15], results in 
a block-tridiagonal system with the matrix 

0 
-I DC -I 

-I DC -I 
-I DC -I 

0 

The diagonal matrix DC contains the eigenvalues of AC. A permutation of rows and 
columns of this matrix which preserves symmetry and groups the lth equation of each 
block together into one block results in a matrix which is the direct sum of n-tridiagonal 
Toeplitz matrices A1l, 1 = 0, 1, . . . , n - 1, of infinite order. Here 

-1 X1 -1 

A1= -1 X1 -1, 
-1 X1 -1 

0 -~~~~~~~~ 

where Xl is an eigenvalue of Ac. We will first restrict our attention to the case c > 0. 
All these matrices are then positive definite. From our assumptions concerning the data 
f, we see that the corresponding right-hand side, derived by using the Fast Fourier 
Transform on the vectors f (i), vanishes for i < N and i > N+ with N and N+ appro- 
priately chosen; we can therefore write 

(6.1) -iv' ? XIu(' -u i4 = 0 for 1< N_ andj> N . 

This homogeneous difference equation has the solution const pi + const u-i where ,il = 

XI/2 ? (X2/4 - 1)1/2 > 1. Imposing the natural free space boundary condition, i.e. 
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requiring that the solution remains bounded for all j, we find that 

^(I) =(9) p(N+ij) j > N+, 
(6.2) 

-() a(l) U-N-) j < N 
j N- N ij N 

By using Eqs. (6.1) and (6.2) for j = N+ + I and j = N- 1 we obtain 
- ~45L1 fN2 and -Uf^(l) 

? ^(I) ) 
A8N_ UN-U()+ 1 = ad N+-1 IUN+ fN+ 

We can therefore set up a finite linear system of equations, 

-~(I) _ 
(I 

;I -Z 1 0 N_ () a | 1 

This ~ ~ ~ ~ ~ ~ - syte ca esledvr aiy ya(Udcopstol ecue)si esl ei 

Thise ytmcnbdovdvr,esl ya Udcmoiin eas,a sesl ei 

- X1 -l 0 

0 -1 X1 -1 
-1 p 

1~~~ 
,1 

1'iIM 
-1? _p-1 1 0 -1#u1 -1 

o ~z -1 1 t 
,U1- 

Here a1 = - ul 1. We note that except for one element in the second factor these 
bidiagonal matrices are Toeplitz matrices. The solution of the five-point discrete Helm- 
holtz equation is thus obtained by Fast Fourier Transforms in the x2-direction, by the 
solution of n very special tridiagonal systems of equations and by an inverse Fast Fourier 
Transform for each value xi for which we need the solution. We note that our method 
imposes no restriction on the number of mesh points used along the strip. 

We now turn to the case of c = 0. The tridiagonal matrix which corresponds to 
the smallest eigenvalue of A_ will then have the form 
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0 

-1 2 -1 

AO -1 2 -1 

0 

while all the others remain positive definite. Guided by the continuous problem, we 

introduce a fundamental solution. We choose the function -Ij - k1/2. We note that 

we could add any linear function and still obtain a fundamental solution. With our 

choice 

(6.3) Uj(O) - -, - kII2)f?) 

We note further that no assumption of the form kf k) = 0 is needed. This is partic- 

ularly important when we generate a representation of the operator G by using the 

data f (j) = 6jl8km The formula (6.3) can be used to evaluate two consecutive values 

of Uj(O), and we can then find the remaining values by employing the simple stable re- 

cursion 

j (O) = 2j(0 ) - Uj(O) - f(). 
Uj+2 j U+1 U il 

There remains the case of c < 0. At least one of the tridiagonal matrices A, will 

then have diagonal elements X, < 2. By imposing a mild restriction on ch2, we assume 

that IX,I < 2. It is easy to verify that -sin(Ij - kl,)/2 sin 01, where 2 cos = X,, is a 

fundamental solution. With this choice 

(6.4) = - ,(sin(lj - k 10,)/2 sin ,), = 2 cos 01. 
k 

We can again use a stable recursion formula 

ij+1 = i i-i - 

to find the remaining values of u('), once two consecutive values of 2(') have been com- 
UI I 

puted. We note that the Chebyshev polynomials of the second kind are defined by 

Un(x) = sin((n + 1)0)/sinG, x = cos0, n > 0, 

and that they satisfy the recursion formula 

Un+1(x) = 2xUn(x) - Unl(x), n > 1, 

U0(x) = 1, U1(x) = 2x. 

We can therefore combine this formula with formula (6.4) to compute the required two 

values of u(l) 

We now turn our attention to the generation of the capacitance matrices. The 

matrices U, V, V and Z are very sparse with a fixed upper bound on the number of non 

zero elements in any row and column. It therefore follows that the number of arithme- 

tic operations required to generate a capacitance matrix grows only as const p2(1 + o(1) 
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if complete information on the operator G is available. To obtain this information we 
solve the Helmholtz equation for u(0,0) with the data given by f V" = 6jO6kO. In our 
program we take advantage of the very special form of the data which virtually elimi- 
nates the need for the first Fast Fourier Transform step. If we denote by u(Q,k) the 
solution resulting from a single unit charge at the point (j, k), we see, by the translation 
invariance, that U,(i,k) = U(,O) . We also use the fact that the solution u(0,0) satis- 
fies 

u(0 0) = u(0,0) and u(0,0) = UI(00) 

Complete information on G can therefore easily be obtained from the mesh function 
u(0,O) which is generated by using a simplified fast Helmholtz solver only once. 

7. The Conjugate Gradient Method. In this section we will briefly describe the 
conjugate gradient method and those of its properties which make it particularly attrac- 
tive for solving the capacitance matrix equations. We have used this method extensively 
as an iterative method for the linear systems of Eqs. (4.2) and (5.2). For a detailed 
theory of the conjugate gradient method see Daniel [13], Hestenes [211, Hestenes and 
Stiefel [22], Kaniel [31], Lanczos [33] and Luenberger [34]. In our experiments we 
have used an implementation of the method, SYMMLQ, developed by Paige and 
Saunders [38]. 

We again denote the capacitance matrix by C. It is a p x p, nonsymmetric and 
dense matrix. The conjugate gradient method requires a symmetric coefficient matrix 
and we therefore work with the corresponding normal equations Qv = b where Q = 
CTC. In each conjugate gradient step we must multiply the matrix Q by a vector u. 
We never compute the matrix Q in our program because that would require p2(p + 1)/2 
multiplications. Instead, we first compute w = Cu and then Qu = CTw. Each step of 
the conjugate gradient method requires 2p2(1 + o(1)) multiplications. 

We denote by v* an exact solution of our system Qv = b and by vo the initial 
guess. In the first step of the algorithm the residual rO = b - Qvo is computed. This 
is the steepest descent direction and it is chosen as the first search direction pl. We 
then find the minimum v1 of the quadratic form ?2vTQV - VTb along the line v = vo 
+ spl. The search direction Pk, k > 1, is chosen as that linear combination of the re- 
sidual rk-l = b - QVk-l and the previous search direction Pk-l1 which makes the vec- 
tors pi Q-conjugate, i.e. pTQpi = 0 for i < k. The kth approximation Vk is the mini- 
mum of the quadratic form along the line v = vkl + Spk. No a priori information 
about the spectrum of Q is needed. This is an advantage compared with the Chebyshev 
and certain other iterative methods. The iteration is terminated when the 12-norm of 
the residual rk becomes less than a certain tolerance. For a detailed description of the 
termination criterion of the conjugate gradient method which we have used in our ex- 
periments, see Paige and Saunders [38]. 

It is easy to verify that the iterates satisfy 

(7.1) Vk = VO + Pk-l(Q)rO, 
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where Pk-, is a polynomial of degree k - 1. It is known (see for example Luenberger 
[34]) that of all iterative methods which satisfy the relation (7.1) the conjugate gradi- 
ent method is optimal in the sense that 

E(v) = ?(v - v*)TQ(v - v*) 

is minimal. Denote by Xi, i, i = 1, ... , p, the eigenvalues and eigenvectors of Q an( 

let vo - v* = 12ci0i be an eigenvector expansion of the initial error. It then follows 
easily from the optimality of the conjugate gradient method that 

(7.2) E(vk) < max(1 - pk_l (Xi))2E(vo), 
X i 

for any choice of a polynomial Pk-, of degree k - 1. This inequality remains valid if 
the maximum is taken only over those Xi for which ai 0 0. The conjugate gradient 
method will therefore, in the absence of round-off, give an exact solution in at most q 
steps where q < p is the number of distinct eigenvalues of Q for which a coefficient a, 
differs from zero. It can be shown by using the inequality (7.2) and a special choice 
of the polynomial Pk-, that 

(7.3) E(Vk) < (2(l - 1IK))kI((I + 1IV/K)2k + (1 - 1IK)2k))2E(v0) 

6 4((l - I/N/K)/(l + 1I\/K)) 2kE(vo); 

see for example Daniel [13]. Here K is the condition number of Q. 
We have seen in Section 5 that Eq. (5.2) has a singular matrix when c = 0. It is, 

therefore, of interest to consider the performance of the conjugate gradient algorithm 
in a singular case. It is easy to show that the right-hand side b of our normal equation 
Qv = b is orthogonal to any eigenvector b which corresponds to a zero eigenvalue. 
Starting from a zero initial guess all the iterates vk will also be orthogonal to 4. In the 
absence of round-off the entire computation will proceed in a subspace orthogonal to 
t. The estimate (7.3) is then valid with K redefined as the ratio between the largest an 

smallest strictly positive eigenvalues of Q. Our experience with the conjugate gradient 
method for singular and almost singular capacitance matrices has been excellent; see 
Section 9. 

As we pointed out in Section 4, we have not been able to prove that the capaci- 
tance matrix in Eq. (4.2) is nonsingular when c = 0. As a safeguard we calculate the 
residual for the original nonsymmetric linear system of equations (4.2) and print a 
warning when its norm is larger than expected. We have found no Dirichlet problems 
with the constant c > 0 for which there are indications that the capacitance matrix 
equation (4.2) fails to have a solution. This feature of our program is of course also 
useful when the constant c is negative. We note that the solution of the least squares 
problems with the conjugate gradient method has been considered from a theoretical 
point of view by Kammarer and Nashed [30]. 

In our experiments we have found that the estimate (7.3) is realistic for Dirichlet 
problems. For such problems the capacitance matrices are typically very well condi- 
tioned. We have also observed impressive rates of convergence for Neumann problems 
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with very small values of c. By a continuity argument such problems must have large 
condition numbers. To explain the success of the conjugate gradient method in these 
cases we must consider the entire spectral distribution. The results can be understood 
in terms of the estimate (7.2) once we realize that the small singular values of C, i.e. 
the positive square root of the eigenvalues of CTC, are isolated and that the singular 
values cluster around a point well removed from the origin. 

We recall that our choice of a double layer Ansatz for the Dirichlet problem was 
based on the conjecture that the singular values of the capacitance matrices would be 
distributed similarly to those of the integral operators of the classical potential theory. 
In order to illuminate this point we consider a case for which the singular values of the 
integral operators are known. Kantorovich and Krylov [32, p. 135], have shown that 
for ellipsoidal regions and Laplace's equation the dipole Ansatz for the Dirichlet prob- 
lem leads to a Fredholm integral operator of the second kind with the singular values 

I +y, j =O, 1, . ., and I - i, j = 1, 2, ... . 

Here -y = (a - b)/(a + b) where a and b are the half axes of the ellipse. The Neumann 
problem, with the single layer Ansatz leads to the singular values 

I - Y, j=0, 1, ..., and 1 + ?y, j-1, 2, ... 

We note that in both cases there is a very pronounced cluster of the spectrum at the 
point one. Very rapid convergence can therefore be anticipated from the estimate (7.2) 
with an appropriate choice of a polynomial. 

Hayes [20] has shown that the conjugate gradient method converges superlinearly 
for Fredholm integral equations of the second kind. We have verified this result by 
numerical experiments with diagonal coefficient matrices. In our applications to the 

capacitance matrix method, we normally fail to observe superlinear convergence. The 
overall structure of the spectrum with a pronounced cluster around the point one is 
however inherited from the continuous problem, see Section 9; and as we have previously 
noted, the rate of convergence is, therefore, often far better than the estimate (7.3). 

The single layer Ansatz for the continuous Dirichlet problem on the interior of 

an ellipse gives the singular values 

y7, j-O,l,... 
A similar cluster of singular values very close to the origin can be observed in experi- 
ments with the analogous discrete Ansatz. This explains the slow convergence and er- 
ratic behavior of the conjugate gradient method when the Woodbury formula is applied 
to the Dirichlet problem; see Section 9. 

In our program we also have an option of using Gaussian elimination for Eqs. 
(4.2) and (5.2) if the capacitance matrix is nonsingular. The factorization step of 
Gaussian elimination requires p313(1 + o(l)) multiplicative operations. The conjugate 
gradient method produces highly accurate solutions in a number of steps which remains 
virtually constant when p is increased. The conjugate gradient method therefore essen- 
tially requires only const p2 operations. The constant depends on the region, the value 
of c and the boundary condition. In our experience, its variation is not very large. 
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Hence, the conjugate gradient method should be used for large enough p if only one or 
a few sets of data are used for the same problem. For experimental evidence see Sec- 
tion 9. 

8. Previous Work on Capacitance Matrix Methods. In this section we will exam- 
ine some earlier work on capacitance matrix methods and also derive estimates of the 
condition number of certain capacitance matrices. A method of this type is described 
very briefly in a paper by Hockney [24], who credits Oscar Buneman for the idea. A 
detailed description of this method, its implementation in Fortran and a listing of a 
program is given in Hockney [26]. The problems considered there differ in certain 
ways from those considered in this paper. The five-point discrete Laplacian is used on 
a uniform mesh in a rectangular region. A large variety of boundary conditions, all of 
separable type, are allowed on the sides of the rectangle. A number of electrodes are 
introduced in the interior and on the boundary of the rectangle. Each is represented 
by a straight line segment to which one or several mesh points are assigned. Prescribed 
average values of the potential on each such set of mesh points are obtained by using a 
capacitance matrix calculation. If the length of a line segment is chosen to be zero, an 
electrode will consist of a single mesh point. Although primarily designed for other 
applications, Hockney's program can be used for the solution of an interior Dirichlet 
problem for Laplace's equation. The capacitance matrix is then the restriction of the 
solution operator, for the problem of our choice on the rectangle, to the set of irregula 
mesh points. Hockney's capacitance matrices are always symmetric, positive definite, 
and storage and time is saved by using the Cholesky algorithm. Hockney's method thu: 
corresponds to a single-layer Ansatz for the Dirichlet problem. In a typical application 
of his program the solution is required for the entire rectangle, a fact which seems to 
preclude the use of discrete dipoles; cf. Section 4. It would not seem possible to use 
his program without modifications to obtain a more than first order accurate solution 
of elliptic finite-difference equations on a general interior region. We doubt that the 

symmetry of the capacitance matrix can be maintained in higher order cases. See dis- 
cussion below. 

The capacitance matrices are generated at the expense of p calls of the subroutine 
which gives the solution on the rectangle. Here p is the number of electrodes. The 
cases of Neumann and periodic boundary conditions on the rectangle, which make the 
Laplace operator singular, are discussed; and the related difficulty is well resolved. The 

capacitance matrices are symmetric even in these cases. By carefully examining his fast 
Poisson solver, Hockney finds a short-cut for the treatment of so-called boundary elec- 
trodes, which are located on two parallel sides of the rectangle. This observation leads 
to the use of two capacitance matrices for the boundary electrodes and the remaining 
electrodes, respectively. Once the Cholesky factors of the capacitance matrix for the 
boundary electrodes are computed, the correction due to boundary electrodes is handle' 
quite inexpensively, while the Poisson problem on the rectangle is solved only once. 

The report contains detailed information on the accuracy and execution time of 
the program when run on an IBM 360/91. 
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The reports by Buzbee, Dorr, George and Golub [7] and George [18] appeared 
almost at the same time as Hockney's paper. Their results are formulated in matrix 
language. In both papers the imbedding idea is discussed generally. Focusing on the 
first of these papers, we find that the Ansatz u = B-1F + B-1 UWp is used when the 
matrix B is nonsingular. Here B is the operator of our choice for the rectangle, W a p 
x p nonsingular matrix and U the extension operator introduced in Section 3. A 
choice of W = I gives the Woodbury formula. The case of a singular matrix B is 
treated in a way different from Hockney's and ours. A nonsingular capacitance matrix 
results in that case if and only if A is nonsingular. An operation count for this method 
has already been given in Section 1. 

A symmetric capacitance matrix is obtained when this single-layer Ansatz is used 
for the Dirichlet problem if no irregular mesh point has a neighbor outside the closure 
of Q2 and W = I. We see no practical possibility of choosing a W which will retain the 
symmetry of the capacitance matrix when a more accurate boundary approximation is 
used. Symmetry is also lost for the Neumann problem even for the simplest boundary. 

We refer to Bramble and Hubbard [3] for a proof that first order accuracy is 
obtained if a general boundary of a Dirichlet problem is approximated by a set of mesh 
points. We also note that, close to the boundary, approximations of the gradient of the 
solution obtained from such a scheme cannot be expected to converge, cf. Bramble and 
Hubbard [4]. This is in contrast to schemes with a more accurate treatment of the 
boundary condition for which asymptotic error expansions exist. From these expan- 
sions the second order accuracy of difference approximations to the first and at times 
higher order derivatives can be obtained; cf. Pereyra, Proskurowski and Widlund [39]. 
It should also be noted that the use of isoparametric finite element methods (cf. Strang 
and Fix [43]), enjoy an increasing popularity for second order elliptic problems. In 
these methods the boundary is approximated quite accurately by piecewise polynomials 
of degree two or higher. The success of such methods undoubtedly reflects the impor- 
tance of an accurate representation of the boundary in many applications. 

One can of course also use a nonsymmetric capacitance matrix in the Buzbee, 
Dorr, George and Golub [7] method. However, we see no reason to prefer their single- 
layer Ansatz for the Dirichlet problem to our double-layer Ansatz. Only a marginally 
lower operation count will result from their choice except in a case where no irregular 
mesh point has a neighbor in the complement of the closure of Q, or an only first order 
accurate approximation is accepted. In such cases the savings in operations result al- 
most entirely from the use of the Cholesky method instead of Gaussian elimination for 
the factorization of the capacitance matrix. 

Buzbee, Dorr, George and Golub [7] also show how capacitance matrix techniques 
can be used to handle problems on unions of rectangles as well as problems with piece- 
wise constant coefficients. 

A number of numerical results are reported in their paper for runs on a CDC 6600. 
Certain of these experiments were later rerun on a CDC 7600 using improved programs. 
A gain in speed of roughly a factor three is reported in a paper by Buzbee and Dorr [6] . 
Some of these results can be found in Table 8. The main emphasis of their paper is the 
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application of a capacitance matrix method to a finite-difference approximation of rec- 
tangular clamped plate problems. Their method is an improved version of an algorithrr 
derived by Golub [19]. The variables can be separated for this plate problem once the 
boundary conditions on two opposite sides of the plate have been suitably modified. 
The order of the capacitance matrix, p, is therefore twice the number of mesh points 
across the plate. To ensure flexibility, the matrix decomposition method (cf. Buzbee, 
Golub and Nielson [8]), is used as a fast solver. This method allows an arbitrary num 
ber of mesh points in both directions, but it requires on the order of n3 operations. 
An efficient implementation of this method still allows very fast execution. When gen. 
erating the capacitance matrix, Buzbee and Dorr take advantage of the sparsity of the 
data vectors and the fact that the solutions are needed only at relatively few points. 
This computation therefore requires only on the order of pn2 operations compared to 
pn3 needed for a straightforward implementation of the capacitance matrix method us 
ing the matrix decomposition method for a general value of n. We see no possibility o 
reducing this operation count substantially by a particular choice of n unless the prob- 
lem is modified to allow for the use of translation invariance; cf. Section 6. Buzbee 
and Dorr also exploit obvious symmetries of the rectangular plate problem when com- 
puting the capacitance matrix. In their experiments with Laplace's equation they take 
advantage of a choice of n = 2k, k integer, by using a faster Laplace solver than the 
matrix decomposition method. 

Once the capacitance matrix and its Cholesky factors have been found, the solu- 
tion of the clamped plate problem requires the usual two calls of the fast solver sub- 
routine and the use of the backsolving part of the Cholesky algorithm for a matrix of 
order p. 

George's [18] paper contains a very interesting idea. George notes that a residuC 
vector for the capacitance matrix equation Cp = b can be calculated at the expense of 
one call of the fast Laplace solver subroutine even if the elements of C have not been 
computed. If the capacitance matrix is positive definite symmetric, the corresponding 
linear system can therefore be solved by the conjugate gradient or the Davidon-Fletche 
Powell method. George reports rapid convergence for these methods and that the nunr 
ber of iterations required is proportional to \/j-. We note that, in the absence of roun 
ing errors, the conjugate gradient and Davidon-Fletcher-Powell methods produce the 
same approximate solutions Pk from the same initial guess if the first approximation o 
C-1 in the Davidon-Fletcher-Powell algorithm is the identity matrix. The performance 
of the two methods is also reported to be virtually identical. 

The Dirichlet problem for Laplace's equation is considered in detail. It is imbedde 
in a Dirichlet problem on a rectangular region, a problem with only strictly positive 
eigenvalues. A single-layer Ansatz is used and a symmetric capacitance matrix is ob- 
tained for simple boundaries or by using a crude approximation of the boundary cond 
tion; see discussion above. The capacitance matrix is then the restriction of the solu- 
tion operator for the rectangle to the set of irregular mesh points. An attractive featux 
of this method is that the error in the boundary values is easily obtained in each step. 
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The error elsewhere is, by the maximum principle, bounded by the error on the 
boundary. This observation is used to obtain a most convenient stopping criterion. 

The capacitance matrix C is a principal minor of the symmetric matrix B-1 in 
this case. Its condition number K(C), induced by the Euclidean vector norm, is there- 
fore bounded by K(B) which is of the order n2. George's numerical evidence is consis- 
tent with a conjecture that the condition number of C grows linearly with p. We have 
computed the condition numbers of certain families of capacitance matrices obtained 
from a single-layer Ansatz for Dirichlet problems and have found a linear growth with 
p; see Section 9. In that section we also report on cases where the single-layer Ansatz 
leads to an excessive number of conjugate gradient iterations. It should be noted that 
we have consistently worked with the normal equations CTCp = CTb. It would be 
interesting to know how the conjugate gradient method performs when used directly 
for the nonsymmetric linear system of equations obtained by using a single-layer Ansatz 
and the Shortley-Weller approximation for a general region. 

We will now give an estimate of K(C) in some more general cases. We will only 
treat cases in which both A and B are nonsingular. If we ignore the factors 2 and D, 
we can write the capacitance matrix C as UTAB-1 U for a single-layer Ansatz. We need 
an upper bound for 

maxI Cx12 = maxI UTAB-1 Ux12, Ix12 = 1, 

and a lower bound for 

minICX12 = minI UTAB 1 UXI2, 1X12 = 1- 

Such bounds are provided by 

maxlUTAB1yl2, Iy12 = 1, and minIUTAB1yl2, Iy12 = 1, 

respectively, which in turn can be estimated by 

IAl2 - IB 12 and 1/(1A 12IB12). 

Thus, 

K(C) S K(A)K(B). 

Both A and B typically have condition numbers on the order of h-2. The upper 
bound for IC12 can be improved by the observation that in this case, hC is a quadrature- 
like discretization of the Fredholm integral equation of the first kind in Section 2. By 
using the techniques of Shieh [42], we can prove that ICl2 is on the order of h-1 and 
the condition number K(C) Will, therefore, grow no faster than const h-3 or const p3. 

Estimates of this type do not enable us to distinguish between a Neumann prob- 
lem with c = 1, for which the capacitance matrices in our experience are uniformly well- 
conditioned, and a single-layer Ansatz for a Dirichlet problem. We will now show, by 
an example provided by Ole Hald, that there is little hope of improving this method. 

Consider two tridiagonal matrices 



HELMHOLTZ'S EQUATION 457 

/1 -1\ 
-1 2 -1 

B= 

2 -1 
-1 2 

and 
2 -1 

-1 2 -1 

A= 

-1 2 -1 
-1 2 

We note that A is a rank one perturbation of B which results when a discrete Neumann 

condition at one end of an interval is replaced by a discrete Dirichlet condition. The 

order of the capacitance matrix is, therefore, one; and the condition number equals one. 

The inverse of B can easily be computed because B = LL T, where 

-11 

A straightforward computation shows that 

AB-1 =I (n (n- 1) + UVT 

where uT = (1,0, 0. . , 0) and VT = (n, n - 1, . .. , 1). To find the singular values, 

we consider 

(I + uvT)q ? T) =I+ W ( 1)WT 
1 0 

where W is a matrix with the two columns v + (vTv12)u and u. All singular values of 

AB-1 except two are thus equal to one, and we have only to find the remaining two. 

These coincide with the eigenvalues of 

( 0 
+ (v + (vTv12)u, U)T(U, V + (vTv12)u). 

0o 1J 
A direct calculation reveals that the smallest eigenvalue is on the order of l/n while the 

largest is on the order of n3. The condition number of AB-1, therefore, grows 
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quadratically with n. This example shows that the estimate of the condition number 
of the restriction of the operator AB-1 to a subspace in terms of the condition num- 
ber of AB-1 can be very crude. 

In order to prove that the capacitance matrices introduced in Section 4 are non- 
singular for c > 0, we first note that C = UTAB-1 V, where we again ignore the factors 
2 and D. It is easy to show that V = PLPTU, where L is a unit lower triangular matrix 
and P a permutation matrix. By using the same arguments as in the single-layer case, 
we find that 

K(C) < K(A)K(B)K(L) 

and that C, thus, is nonsingular. This argument is again quite crude and fails to reveal 
the great power of the double-layer Ansatz. 

An interesting application of a capacitance matrix method to the calculation of 
the potential flow of an incompressible fluid past a two-dimensional airfoil is given in 
Martin [35]. The stream function satisfies a zero Dirichlet condition on the airfoil and 
is expressed, far from the airfoil, in terms of the free stream velocity and an unknown 
parameter r, the circulation. An additional condition, the Kutta condition, allows the 
determination of r. The Dirichlet condition is represented by an interpolation formula 
which does not seem to be directly related to classical finite-difference techniques. The 
values of r and the appropriate point charges at certain mesh points inside and on the 
airfoil are computed by solving a capacitance matrix equation. 

We also note that Angel and Bellman [1] have explored an imbedding idea in 
their work on the numerical solution of elliptic problems. A matrix for a linear system 
of equations, very similar to our matrix A, is obtained by imbedding the original prob- 
lem in a rectangle. This system is then solved by a block-Gaussian elimination method. 
The imbedding simplifies the programming, because all blocks of the block-tridiagonal 
system of equations will be of the same order. 

9. Numerical Experiments. In this section we will report on results from a series 
of numerical experiments which were carried out mainly on the IBM 360/75 computer 
at the Royal Institute of Technology in Stockholm. In our experiments we have used 
the program listed in the ERDA-NYU version of this paper and some slightly different 
versions of that program. Our programs closely reflect the ideas presented in Sections 1- 
7. We report on runs for different values of the mesh size and the constant c, for 
Dirichlet and Neumann boundary conditions and for three different regions. Our main 
purpose throughout has been to study the performance of the capacitance matrix method 
as a highly specialized linear equation solver. We have therefore worked extensively with 
problems with no discretization error such as those whose solutions are polynomials of 
second degree. This simplifies the study of the error originating from the linear equation 
solver. We are confident after a series of experiments that the performance of the 
method is virtually independent of the character of the data, the method of extending 
the data to (CQ2)h, the width of the strip and the values of the parameters N_ and N+. 
Some of these experiments are further discussed below. 
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TABLE 1 

Neuwann Problem Diricinlet Problem, D rirclhlet Problem 
Double-Layer Anlsatz Sin&le-Layar Ansatz 

\ p=- 32 p 64 p = 32 p - 64 p 32 p = 64 

O -0. 1 1 1 0 37 

0O 1 -0.2 0 0 17 16 

0.2 0.3 0 0 7 4 

0K3 o04 0 0 1 1 2 2 

0.)1 - 0.5 1 1 0 0 1 1 

0.5 - o06 0 0 1 1 1 2 

o. 6 - 0.7 0 0 0 2 2 0 

0.7 -Oo8 0 0 10 24 0 0 

0. 8 - 0.9 1 7 13 24 0 0 

0.9 - loO 6 13 1 6 0 O 
1.0 - 1.1 11 22 4 4 0 0 

1e1 - 1.2 10 18 0 0 0 0 

1.2 -1.3 0 0 0 1 0 0 

1.3 --1.4 0 1 1 0 0 1 

1.4-1.5 2 1 0 0 0 0 

1.5 -1.6 0 0 1 

1.6 - 1.7 0 0 0 

1.7 -1.8 0 1 1 

1.8 -1.9 0 

1.9 -2.0 0 

2.0 -2.1 1 

The distribution of the singular values of capacitance matrices of order 

p. The domain is a circle and the constant c in the Helmholtz equation 
is zero. 

The first series of experiments was carried out to test the validity of the discrete 
potential theory. The singular values of certain capacitance matrices were computed by 
using the subroutines HSBG and ATEIG of the Scientific Subroutine Package. The 
results are shown in Table 1. These singular values are not directly comparable to 

those given in Section 7, because we have used the fundamental solution for a strip in 
our experiments. Other experiments for different regions also showed similar pro- 
nounced clusters of the singular values of the capacitance matrices. We note that the 

capacitance matrices in Table 1 which resulted from the single-layer Ansatz for the 
Dirichlet problem were fairly well conditioned. As expected, they have clusters of sin- 

gular values close to the origin. Other cases reported in Table 2 are much more ill con- 
ditioned. The erratic behavior of the spectrum of the capacitance matrix when a single 

layer Ansatz is used for the Dirichlet problem is clearly seen when we compare the case 
of c = 0 and that of c = 10-6. See further the discussion in Section 7. In an earlier 

experiment the use of the method of Buzbee, Dorr, George and Golub [7] to handle 
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TABLE 2 

Dirichlet Problein Dirichlet Problem 
Neumann Problem Double-Layer Single-Layer 

Ans,atz Ansatz 

p = 32 p = 64 P=32 p_ 6 p = 32 p = 64 

I 10 11 9 11 10 22 
=0 

IC 2.9* 2.9* 5.4 4.8 12 20 

10-6 I 10 11 10 15 17 35 
I 670 44o 5.4 4.8 ** ** 

c=105 ~I 11 12 10 14 13 28 

IC 67 6o 4.9 4.4 500 860 

I 15 13 9 11 10 21 

IC 2.6 2.14 2.1' 2.0 10 17 

I 14 15 9. 12 12 21 

C = - IC 2.9 3.0 2.8 2.6 8.4 14 

The number of conjugate gradient iterations I and the spectral condition 
number K(C) of the capacitance matrices for problems on a circle for dif- 
ferent values of the constant c and the number of irregular mesh points p. 

* This condition number was computed disregarding a singular value 
very close to zero, see Section 7. 

** In this case the eigenvalue routine returned negative values for 
the smallest singular values. The positive definiteness of CTC did not 
survive the formation of CTC, in double precision, and the use of the 
eigenvalue routine. 

the case c = 0 resulted in a capacitance matrix which had a condition number 161 for 
p = 64 and a circular region. Thus, the use of their method would not appear to re- 
solve the difficulties inherent in the use of the single-layer Ansatz for the Dirichlet prob- 
lem. 

In Tables 2 and 3 we report on a series of experiments designed to assess the effi- 
ciency of the conjugate gradient method. The tolerance for the conjugate gradient 
method was set equal to 10-6. We note that in most applications we would be satisfied 
with a cruder tolerance. 

The results reported in Table 4 indicate that the norm of the residual at the ter- 
mination of the iteration gives a reliable estimate of the resulting error. 

In Table 5 we report on an experiment which shows the importance of a proper 
scaling of the capacitance matrix. The choice of the scaling recommended in Section 4 
resulted in nineteen iterations for the case c = 0. We note that the poorly-scaled capac- 
itance matrices are fairly well conditioned. The large number of iterations undoubtedly 
reflects an unfortunate distribution of the singular values. 
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TABLE 3 

Neurmann Problem Dirichlet Problenm, 
Double-Layer Ansatz 

p = 27' P =56 p-=117' p =27 p = 56 p =11 

I 13 15 15 16 16 18 
c= 0 

K 3.5* 3*5* 3 * 5 4.o0 __ 

c 10 6 I 26 31 38 20 19 22 
ic 335* 3.5* ** 3*5 4. * 

c - 10-3 I 20 23 26 16 17 20 
K 3.5* 3.5* * 3*3 3.8 ** 

I 14 15 16 12 13 15 
c1 

Kc 4.8 3.3 *I 2.4 2.5 * 

- tI 114 16 16 13 14 15 

c=-1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C 
I~C 3.9 3.6 **3.5 3.3 * 

The number of conjugate gradient iterations I and the condition number 
K(C) of capacitance matrices for the region displayed in Figure 2 for the 
different values of c and the number of irregular mesh points p. 

* This condition number was computed disregarding a singular 
value very close to zero, see Section 7. 

** Not available. 

Experiments were carried out for the domain of Figure 2 to study the influence 
of the data on the performance of the algorithm. Dirichlet problems with the constant 
c = 1 were used and the tolerance for the conjugate gradient method was 10-6. For a 
problem with a second degree polynomial solution, twelve iterations were required for 
p = 27 and fifteen iterations were needed for p = 117. The same problems with ran- 
dom data required thirteen and sixteen iterations, respectively. 

The classical Fredholm theory is directly applicable only to regions with smooth 
enough boundaries. Experiments with square regions, with the sides of the square at 
450 angle to the coordinate axes seem to indicate that our program will not require a 
more than normal number of iterations for domains with corners. We note, however, 
that such problems often fail to have sufficiently smooth solutions. This can make the 
discretization error of the finite-difference approximation very large. 

In Diagram 1 we compare the rate of convergence predicted by the first part of 

inequality (7.3) and that actually observed in two experiments. 
In Table 6 we report the CPU-time for our program when run on an IBM 360/75 

using a FORTRAN H-level 2.1 optimizing compiler. Variations of measurements of up 
to 10% have been observed. We report the minimum recorded of several runs. 

The required storage, excluding the program itself, is (p + 22)p + 2n2 in our 



462 WLODZIMIERZ PROSKUROWSKI AND OLOF WIDLUND 

TABLE 4 

Neumann Problem Dirichlet Problem, 
Double-Layer Ansatz 

p = 27 p 56 p = 27 p= 56 P = 56 

Norm of 
residual oni 23*310 7 4.o lo-7 6.8 .1-7 6.-o2o07 4.71e 2 
exit from 
SYMMLQ 

axi|urum 1.210-6 1.4.10-6 10 nOrm of 162o10o 9,.6lo0 8.4.lo2 
the error 

Normalized 2 
A -norm of 2.8.10--7 1.9.10-7 2.2-10 7 2.0.10-2 
tg-e error _____ 

Number of 
iterations 14 15 12 13 

A comparison of the norm of the residual of the conjugate gradient algo- 
rithm and the over all error for problems on the domain of Figure 2 and 
with c = 1. The normalized 12-norm of the error is the 12-norm divided 
by the square root of the number of points in Qh U Fa2h. 

434-DEKENI PAGE 21 
HELMHOLTZ EQN.WITH DIRICHL. BOUNDARY CONOITIONS 
LU+CU=F IN REGION 
U=G ON BCUNDARY 

C= 0.0 
NUMBER OF POINTS IN RECT.REGION= 16* 16 
NUMBER OF BOUNDARY POlNTS= 27 

-LOG( I ERRORI I 

0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 000 
0 0 0 0 0 0 0 0 0 0 0 0 0 000 
0 0 0 0 0 010 8 9 8 7 ao 0 00 
0 0 0 0 0 0 9 8 8 8 8 8 0 00 0 
0 0 0 0 0 8 8 8 8 8 8 8 9 00 0 
0 0 0 0 0 8 8 8 8 8 8 9 8 00 0 
0 0 0 0 0 9 8 8 8 8 8 8 9 00 0 
0 0 0 0 0 8 8 8 8 8 8 8 9 00 0 
0 0 0 0 0 8 8 8 8 8 8 8 8 00 0 
0 0 0 0 0 8 8 8 8 8 8 0 0 00 0 
0 0 0 0 0 8 8 8 8 8 0 0 0 00 0 
0 0 0 0 0 0 8 8 8 0 0 0 0 0 0 
0 0 0 0 0 0 8 8 8 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 000 

NO.POINTS MAX A L2 - NORMS OF THE ERROR 
68 3.16924D-08 1.15157D-08 

FIGURE 2 

The last page of output from a run with our program. Points with a zero 
value represent exterior mesh points. The strictly positive numbers indicate 
the number of correct decimal digits, rounded to the nearest integer, ob- 
tained at the particular mesh points. 
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TABLE 5 

Scaling according Scaling making diagonal 
to formula (4.4) elemeent equal to 4 +ch2 

Constant c O 1 

Number of iterations 
with tolerance > 56 34 16 13 
ACCY =l0o6>534163 

Condition 10 1 I 2 X 
number of C10 1.4025 

A comparison on the effect of scaling of the capacitance matrix on the 
performance of the conjugate gradient method for Dirichlet problems on 
the domain of Figure 2. The number of irregular points was p = 56. 

-2 

-4\ 

-6\ , 

-lo 

NUMBER OF ITERATIONS 

5 10 ,5 20 25 

DIAGRAM 1 

The rate of convergence of the conjugate gradient method for the capaci- 
tance matrix equation for Dirichlet problems. The curve I is for the con- 
stant c = 0 and the curve II for c = 1. The curves I' and II' are based on 
computed values of the condition numbers and formula (7.3). 

implementation. The number of irregular points p grows linearly with n. In the case 
reported in Table 6 p is approximately equal to 2n. We note that the Helmholtz solver 
contributes less than 20% to the total execution time in these cases. We therefore ignore 
the term proportional to n2 10g2 n in the estimate of the execution time and conjecture 
that the time grows as const p2 if the conjugate gradient variant is used. When we test 
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TABLE 6 

Number of irregular mesh 27 56 117 points p 

Total number of mesh 16 x 16 32 x 32 64 x 64 
points 

Time for Helmholtz solver 0.04 0.15 0.73 
SOLVE , 0_73 

Time to generate capacitance 0o.6 0.26 1.15 
matrix in the Neumann case 

In the Dirichlet case 0.16 0.70 3.06 

Factorization time for 0.08 05 '11 
Gaussian elimination . *55 

Backsolviang time for < 0.01 0.03 0.12 
Gaussian 

elim_inati,on 

Time to reach 10-6 
tolerance by using the 0.26 0.96 4.08 
conjugate gradient method 

Time to generate the 
problem and other overhead* . 053 . 

Total time using conjugate 
gradient method in the 0.50 1.75 7-34 
Neumann case 

In the Dirichlet case 0.60 2.19 9-55 

Total time with Gaussian 0o36 1.81 10.62 
elimination, Dirichlet case 

Total time to solve an 
additional problem using the 0.16 o.46 1.77 
Gaussian elimination option 

CPU-time in seconds for problems on the region of Figure 2 on an 
IBM 360/75. 

* The time to read in data and to print the results is not included. 

this conjecture using the two right most columns of Table 6 we find that the ratio of 
the squares of the values of p equals 4.36, while the execution time grows by a factor 
of 4.20 for the Neumann problem and by a factor of 4.36 for the Dirichlet problem. 

In order to assess the efficiency of our program we compare the CPU-time of our 
Helmholtz solver with those of other solvers on a 128 x 128 rectangular mesh as they 
are given in Hockney [27]. The results are given in Table 7. All times refer to runs 
on the IBM 360/75 computer using an H-level FORTRAN compiler. We note that our 
program is slower than the others, but that this is of little importance in the present 
context. 

This and other parts of our code could undoubtedly be made faster. Our current 
program is a modification of a program developed primarily to test the validity of the 
discrete potential theory; relatively little attention was paid to its speed of execution. 

A comparison is made in Table 8 between the running times of two versions of 
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TABLE 7 

POT 1, Hockneyts method 2.55 

XYPOIS, Buneman' s method 3.41 

ODDEVN, A. George's implementation 18 
of Bunernant s method 3. 

OLVE, our Fourier-Toeplitz 3 55 
solver I 

CPU-time in seconds for Poisson solvers on IBM 360/75 computers. H- 
level FORTRAN compilers are used and the mesh is 128 x 128. The 
data on Hockney's and Buneman's methods are obtained from Hockney 
[27]. 

TABLE 8 

Neumann Problem Dirichlet Problem 

n =p =32 n =p =64 n =p =32 n =p =64 

Our current program 
on an IBM 360/75. 
Conjugate gradient 0.95 3.36 1.14 4.02 
option with 
ACCY =io6 

An older version 
of our program on 
an IBM 360/75. - _ 1.72 6.19 
Conjugate gradient 
option with 

.CY .. 1.6 

The older version 
on a CDC 7600 with 
the RUN 76 compiler. 
Conjugate gradient _ 0.348 1.43 
option with 

ACCY = lO- 

With Gaussian _ _ 0.338 1.45 
elimination option 

Buzbee and Dorr's 
Fortran program, as 
reported in [66], on 0.365 2.65 
a CDC 7600 

CPU-time in seconds. The region in our experiments was a circle. 

our program and those reported in Buzbee and Dorr [6]. The runs with an older ver- 
sion of our program on the CDC 7600 were kindly carried out for us by Dr. Victor 
Pereyra while he was visiting the Lawrence Berkeley Laboratory. When the parameters 
n and p were doubled the execution time of our program grew only by a factor between 
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3.52 and 4.10, while those of Buzbee and Dorr grew by a factor 7.26 or roughly as the 
second and third powers of p, respectively. This is as predicted by the operation counts. 
We, therefore, expect our program to be even more competitive for larger problems. 
We also note that the ratio p/n is only one in these experiments while a more typical 
value would be about three. In such cases with relatively few boundary points the 
Gaussian elimination option is just about as efficient as the conjugate gradient option. 
The experiments reported by Buzbee and Dorr are for quite simple geometries which 
would permit a simplification of our program. 
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